A BOUNDED NORMAL LIGHT INTERIOR FUNCTION THAT POSSESSES NO POINT ASYMPTOTIC VALUES

BY

J. H. MATHEWS

ABSTRACT

Bagemihl and Seidel have shown that the set of Fatou points of a normal holomorphic function in D is everywhere dense on C . We present an example of a bounded normal light interior function that possesses no point asymptotic values.

Let D be the unit disk, C the unit circle. Let f be a light interior function from D into the Riemann sphere W , i.e., let f be a continuous open map that does not take any continuum into a single point. It is know that f has a factorization $f = g \circ h$ where h is a homeomorphism of the unit disk onto either the unit disk or the finite complex plane and g is a non-constant meromorphic function $[3]$. We will be concerned with the case when the range of h is the unit disk.

We say that f has the *point asymptotic value c at* $e^{i\theta}$ if there exists a Jordan arc lying in D except for one end point $e^{i\theta}$ on which f has the limit c. The function f is *normal* if it is uniformly continuous with respect to the non-Euclidean hyperbolic metric ρ in D and the chordal metric in W [4]. Let h be a homeomorphism of D onto D. If h is uniformly continuous with respect to the non-Euclidean hyperbolic metric in both its domain and range, then we say that h is HUC. Since the composition of two uniformly continuous functions is uniformly continuous, the following theorem is immediate $\lceil 5 \rceil$.

THEOREM A. Let h be a homeomorphism of D onto D which is HUC. If g is a *non-constant normal meromorphic function in D then the light interior function* $f = g \circ h$ is normal.

Fatou's theorem states that a bounded holomorphic function possesses radial limits at almost every point of C. The following result shows that a bounded normal light interior function need not posses any point asymptotic values.

Received August 15, 1969 and in revised form November 23, 1969,

382 **J.H. MATHEWS Israel J. Math.**,

THEOREM. *There exists a homeomorphism h of D onto D with the property: If g is a non-constant normal meromorphic function in D, then the light interior function* $f = g \circ h$ *is normal and possesses no point asymptotic values.*

Since a bounded holomorphic function is normal, we obtain the following corollary.

COROLLARY. *There exists a homeomorphism h of D onto D with the property: If g is a non-constant bounded holomorphic function in D, then the bounded light interior function* $f = g \circ h$ *is normal and possesses no point asymptotic values.*

Before proving the Theorem we establish the following lemma.

LEMMA. *There exists a homeomorphism h of D onto D such that the radii of D are mapped onto spirals and h is HUC.*

Proof. Let $\{R_n\}$ be a strictly increasing sequence of non-negative real numbers with $R_0 = 0$ for which $\rho(R_n, R_{n+1}) = 1/(1 - R_n^2)$. Let $\Phi(r)$ be a mapping of the interval [0, 1) onto itself defined by $\Phi(r) = (rR_1)/R_2$ for $0 \le r < R_2$ and satisfying the equation

$$
\rho(R_{n-1}, \Phi(r))/\rho(R_{n-1}, R_n) = \rho(R_n, r)/\rho(R_n, R_{n+1})
$$

for $R_n \le r < R_{n+1}$ ($n=2,3,...$). A straightforward calculation shows that if $R_n \le r_1 \le r_2 < R_{n+1}$, then $\rho(\Phi(r_1), \Phi(r_2)) \le \rho(r_1, r_2)$. Define a function $\Psi(r)$ on [0,1) by $\Psi(r) = 2\pi \rho(0,r)/\rho(0,R_2)$ for $0 \le r < R_2$ and satisfying the equation $\Psi(r) = 2\pi \rho(R_n, r)/\rho(R_n, R_{n+1})$ for $R_n \le r < R_{n+1}$ $(n = 2, 3, \cdots).$

Let the mapping h in D be defined by

$$
h(z) = h(re^{i\theta}) = \Phi(r) \exp(i\theta + i\Psi(r)).
$$

It is easy to verify that h is a homeomorphism of D onto D and that the radii of D are mapped onto spirals.

Set $A_n = \{z: R_n \leq |z| < R_{n+1}\}$. Let $n \geq 2$ be fixed but arbitrary and let z, $z' \in A_n$ with $\rho(z, z') < 1$; the proof will be complete if we can find a constant K independent of *n*, for which $\rho(h(z), h(z')) \leq K\rho(z, z')$. We may assume that $z = re^{i\alpha}$ and $z' = r'e^{i\beta}$ with $r \le r'$. Then we have the following inequality

$$
\rho(h(z), h(z')) \leq \rho(\Phi(r) \exp(i\alpha + i\Psi(r)), \Phi(r) \exp(i\beta + i\Psi(r)))
$$

+
$$
\rho(\Phi(r) \exp(i\beta + i\Psi(r)), \Phi(r) \exp(i\beta + i\Psi(r')))
$$

+
$$
\rho(\Phi(r) \exp(i\beta + i\Psi(r')), \Phi(r') \exp(i\beta + i\Psi(r'))).
$$

From the fact that $\Phi(r) \leq r$ we obtain

$$
\rho(\Phi(r)\exp(i\alpha + i\Psi(r)), \Phi(r)\exp(i\beta + i\Psi(r)))
$$

=
$$
\rho(\Phi(r)e^{i\alpha}, \phi(r)e^{i\beta}) \leq \rho(re^{i\alpha}, re^{i\beta}) \leq \rho(z, z').
$$

From the facts that $\Phi(r) \leq R_n$ and $\rho(R_n, R_{n+1}) = 1/(1 - R_n^2)$ and [2, §43], we obtain

$$
\rho(\Phi(r) \exp(i\beta + i\Psi(r)), \Phi(r) \exp(i\beta + i\Psi(r')))
$$
\n
$$
\leq \int_{\Psi(r)}^{\Psi(r')} \frac{\Phi(r)d\theta}{1 - [\Phi(r)]^2}
$$
\n
$$
\leq 2\pi [\rho(R_n, r') - \rho(R_n, r)]/[(1 - R_n^2)\rho(R_n, R_{n+1})]
$$
\n
$$
\leq 2\pi \rho(r, r') \leq 2\pi \rho(z, z').
$$

From the fact that $\rho(\Phi(r),\Phi(r')) \leq \rho(r,r')$, we obtain

$$
\rho(\Phi(r) \exp(i\beta + i\Psi(r')),_{\phi(r')} \exp(i\beta + i\Psi(r')))
$$

=
$$
\rho(\Phi(r), \Phi(r') \leq \rho(r, r') \leq \rho(z, z').
$$

Combining the above estimates, we choose $K = 2 + 2\pi$ and the proof of the lemma is complete.

Proof of the Theorem. Let h be the homeomorphism of the lemma. Let g be a non-constant normal meromorphic function in D. Then by Theorem A, the light interior function $f = g \circ h$ is normal. If f has a point asymptotic value c along a Jordan arc Γ , then it is easy to verify that $h(\Gamma)$ is a spiral asymptotic path of g for the value c. By a theorem of Bagemihl and Seidel $[1,$ Theorem 1, p. 10], $g \equiv c$ in violation of our hypothesis. Therefore f has no point asymptotic values and the theorem is proved.

REFERENCES

1. F. Bagemihl and W. Seidel, *Koebe arcs and Fatou points of normal functions,* Comment. Math. Helv. 36 (1961), 9-18.

2. C. Carathéodory, *Conformal representation*, Cambridge, 1963.

3. P. Church, *Extensions of Storlows's Theorem,* J. London Math. Soc. 37 (1962), 86-89.

4. P. Lappan, *Some results on harmonic normal functions,* Math. Z. 90 (1965), 155-159.

5. J. Mathews, *Normal light interior functions defined in the unit disk,* Nagoya Math. J., (to appear).

CALIFORNIA STATE COLLEGE, FULLERTON