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ABSTRACT 

Bagemihl and Seidel have shown that the set of Fatou points of a normal 
hotomorphic function in D is everywhere dense on C. We present an example 
of a bounded normal light interior function that possesses no point asymptotic 
values. 

Let D be the unit disk, C the unit circle. Let f be a light interior function from D 

into the Riemann sphere W, i.e., let f be a continuous open map that does not take 

any continuum into a single point. It is know that f has a factorization f = g o  h 

where h is a homeomorphism of the unit disk onto either the unit disk or the 

finite complex plane and g is a non-constant meromorphic  function [3]. We will 

be concerned with the case when the range of h is the unit disk. 

We say that f has the point asymptotic value c at e i° if  there exists a Jordan arc 

lying in D except for one end point e i° on which f has the limit c. The function f 

is normal if it is uniformly continuous with respect to the non-Euclidean hyperbolic 

metric p in D and the chordal metric in W [4]. Let h be a homeomorphism of D 

onto D. I f  h is uniformly continuous with respect to the non-Euclidean hyperbolic 

metric in both its domain and range, then we say that h is HUC. Since the compo- 

sition of  two uniformly continuous functions is uniformly continuous, the following 

theorem is immediate [5]. 

TrIEORnM A. Let h be a homeomorphism of D onto D which is HUC.  I f  g is a 

non-constant normal meromorphic function in D then the light interior function 

f =  g o  h is normal. 

Fatou 's  theorem states that a bounded holomorphic function possesses radial 

limits at almost every point of  C. The following result shows that a bounded 

normal light interior function need not posses any point asymptotic values. 
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THEOREM. There exists a homeomorphism h of D onto D with the property: 

I f  g is a non-constant normal meromorphic function in D, then the light interior 

function f =  go h is normal and possesses no point asymptotic values. 

Since a bounded holomorphic function is normal, we obtain the following 

corollary. 

COROLLARY. There exists a homeomorphism h of D onto D with the property: 

I f  g is a non-constant bounded holomorphic function in D, then the bounded 

light interior function f =  go h is normal and possesses no point asymptotic 

values. 

Before proving the Theorem we establish the following lemma. 

LEMMA. There exists a homeomorphism h of D onto D such that the radii 

of D are mapped onto spirals and h is HUC. 

Proof. Let {Rn} be a strictly increasing sequence of non-negative real numbers 
with Ro = 0 for which p(R,,Rn+I) = 1/(1 - R2). Let O(r) be a mapping of the 

interval [0,1) onto itself defined by ~(r)  = (rR1)/R z for 0 < r < R 2 and satisfying 

the equation 

p(Rn_ 2, O(r))/p(Rn_ l, Rn) = p(Rn, r)/p(Rn, Rn + 1) 

for R n < r < R n +  1 ( n = 2 , 3 , . . . ) .  A straightforward calculation shows that if 

Rn < rl < r2 < Rn+l, then p(~(rl) ,~(r2) ) < p(rl,r2). Define a function q~(r) on 

[0,1) by q~(r)= 2zcp(O,r)/p(O, R2) for 0 < r < R2 and satisfying the equation 

~P(r) = 2~zp(R,,r)]p(R~,Rn+l) for Rn < r < Rn+ 1 (n = 2,3, ...). 
Let the mapping h in D be defined by 

h(z) = h(re ~°) = qb(r)exp (iO + iV(r)). 

It is easy to verify that h is a homeomorphism of  D onto D and that the radii of D 

are mapped onto spirals. 

Set An= (z:R <__lzl<Rn+ )Let n__>2 be fixed but arbitrary and let z, 

z' ~ An with p(z, z ')  < 1; the proof  will be complete if we can find a constant K 

independent of  n, for which p(h(z ) ,h ( z ' ) )<Kp(z , z ' ) .  We may assume that 

z = re ~ and z '  = r'e ia with r < r'. Then we have the following inequality 

p(h(z), h(z')) < p(O(r) exp (i~ + itP(r)),~(r) exp (ifl + iV(r))) 

+ p(O(r) exp (ifl + iq/(r)), O(r) exp (ifl + iW(r'))) 

+ p(O(r)exp(ifl + iV(r')) ,O(r')exp(ifl  + iV(r'))). 



Vol. 7, 1969 A NORMAL FUNCTION 383 

From the fact that Off) =< r we obtain 

p(O(r) exp (is + i~t'(r)), ¢~(r) exp (ifl + i~P(r))) 

= p(~(r )e  i~, ~(r) e ~p) <= p(re , re ) <: p(z,  z ') .  

From the facts that O f f ) < R .  and p ( R . , R . + I ) =  1 / ( 1 - R  2) and [2, §43], 

we obtain 

p(q)(r) exp (ifl + iT(r ) ) ,  O(r) exp (ifl + iT(r ' ) ) )  

< f v(,') O(r)dO 
= ~w(,) 1 -  [O(r)] 2 

___ - p ( R . ,  - 0] 

<= 2 ~ p ( r , r ' )  < 2 ~ p ( z , z ' ) .  

From the fact that p((I)(r),O(r')) < p(r, r'),  we obtain 

p(O(r) exp (ifl + iT(r ' ) ) ,  ~(r,)exp(ifl + iv(r '))) 

= p(O(r), qb(r') __< p(r, r') <= p(z, z'). 

Combining the above estimates, we choose K = 2 + 2~r and the proof  of  the 

lemma is complete. 

Proof of the Theorem. Let h be the homeomorphism of the lemma. Let g 

be a non-constant normal meromorphic function in D. Then by Theorem A, the 

light interior function f = g o h is normal. If  f has a point asymptotic value c 

along a Jordan arc F, then it is easy to verify that h(F) is a spiral asymptotic path 

of  g for the value c. By a theorem of Bagemihl and Seidel [1, Theorem 1, p. 10], 

g = c in violation of our hypothesis. Therefore f has no point asymptotic values 

and the theorem is proved. 
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